Weierstrass Pairs and Minimum Distance of Goppa Codes
نویسنده
چکیده
We prove that elements of the Weierstrass gap set of a pair of points may be used to define a geometric Goppa code which has minimum distance greater than the usual lower bound. We determine the Weierstrass gap set of a pair of any two Weierstrass points on a Hermitian curve and use this to increase the lower bound on the minimum distance of particular codes defined using a linear combination of the two points.
منابع مشابه
On Goppa Codes and Weierstrass Gaps at Several Points
We generalize results of Homma and Kim [2001, J. Pure Appl. Algebra 162, 273–290] concerning an improvement on the Goppa bound on the minimum distance of certain Goppa codes.
متن کاملOn Weierstrass semigroups and the redundancy of improved geometric Goppa codes
Improved geometric Goppa codes have a smaller redundancy and the same bound on the minimum as ordinary algebraic geometry codes. For an asymptotically good sequence of function fields we give a formula for the redundancy.
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملOn the parameters of Algebraic Geometry codes related to Arf semigroups
In this paper we compute the order (or Feng-Rao) bound on the minimum distance of one-point algebraic geometry codes CΩ(P, ρlQ), when the Weierstrass semigroup at the point Q is an Arf semigroup. The results developed to that purpose also provide the dimension of the improved geometric Goppa codes related to these CΩ(P, ρlQ).
متن کاملOn Codes from Norm-Trace Curves
The main results of this paper are derived by using only simple Gröbner basis techniques. We present a new construction of evaluation codes from MiuraKamiya curves Cab. We estimate the minimum distance of the codes and estimate the minimum distance of a class of related one-point geometric Goppa codes. With respect to these estimates the new codes perform at least as well as the related geometr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 22 شماره
صفحات -
تاریخ انتشار 2001